Linear Invariance and Integral Operators of Univalent Functions
نویسنده
چکیده
Different methods have been used in studying the univalence of the integral (1) Jα,β(f)(z) = ∫ z 0 ( f ′(t) )α(f(t) t )β dt, α, β ∈ R, where f belongs to one of the known families of holomorphic and univalent functions f(z) = z + a2z + · · · in the unit disk D = {z : |z| < 1} (see [5]). In this paper, we study a larger set than (1), namely the set of the minimal invariant family which contains (1), where f belongs to the linear invariant family, and thereby we obtain information about the univalence of (1). In particular, we determine the order of this minimal invariant family in the cases of univalent and convex univalent functions in D. As a result, we find the radius of close-to-convexity and the lower bound for the radius of univalence for the minimal invariant family in the case of convex univalent functions. This allows us to determine the exact region for (α, β) where the corresponding minimal invariant family is univalent and close-to-convex. These results are sharp and generalize those which were obtained in [10].
منابع مشابه
Sandwich-type theorems for a class of integral operators with special properties
In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.
متن کاملSome concavity properties for general integral operators
Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.
متن کاملModified homotopy method to solve non-linear integral equations
In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملOn Two Saigo’s Fractional Integral Operators in the Class of Univalent Functions
Recently, many papers in the theory of univalent functions have been devoted to mapping and characterization properties of various linear integral or integro-differential operators in the class S (of normalized analytic and univalent functions in the open unit disk U), and in its subclasses (as the classes S∗ of the starlike functions and K of the convex functions in U). Among these operators, ...
متن کامل